
Int J Theor Phys (2008) 47: 15–25
DOI 10.1007/s10773-007-9525-9

Covariance and Quantum Logic

Quan Tran · Alexander Wilce

Received: 28 February 2007 / Accepted: 15 August 2007 / Published online: 9 September 2007
© Springer Science+Business Media, LLC 2007

Abstract Considering the fundamental role symmetry plays throughout physics, it is re-
markable how little attention has been paid to it in the quantum-logical literature. In this
paper, we discuss G-test spaces—that is, test spaces hosting an action by a group G—and
their logics. The focus is on G-test spaces having strong homogeneity properties. After es-
tablishing some general results and exhibiting various specimens (some of them exotic),
we show that a sufficiently symmetric G-test space having an invariant, separating set of
states with affine dimension n, is always representable in terms of a real Hilbert space of
dimension n+1, in such a way that orthogonal outcomes are represented by orthogonal unit
vectors.

1 Introduction

In the most basic formulation of quantum mechanics, the set of directly testable proposi-
tions concerning a physical entity form, not a Boolean algebra, but the projective geometry
P(H) of closed subspaces of a Hilbert space. This is an orthomodular—in finite dimensions,
modular—orthocomplemented lattice, and thus, in a sense, “locally boolean”. Gleason’s the-
orem tells us that the states of the quantum system are in one-to-one correspondence with
probability measures defined on P(H). From this, one can reduce essentially the entire ap-
paratus of quantum theory to a non-classical probability theory in which boolean algebras
are replaced by projective geometries [5, 7].

Many efforts have been made to motivate this framework for a generalized probability
theory in an autonomous way. These typically begin with a spare “operational” infrastruc-
ture, from which—after the imposition of various (and variously motivated) axioms—an
ordered set of “propositions” is constructed, and shown to have the structure of, say, an or-
thomodular poset, or an orthomodular lattice, etc. We use the phrase quantum logic to refer
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to such accounts generically. A particularly elegant example is the theory of test spaces,
or manuals, due to D.J. Foulis and the late C.H. Randall [1–3]. In this approach, the ba-
sic structure to be generalized is not the ordered set of subspaces, but rather, the set FH of
frames—unordered orthonormal bases—of H. In quantum probability theory, each frame
of H represents the outcome-set of a physical experiment. Accordingly, Foulis and Randall
begin with an abstract collection A of non-empty sets, called tests, each considered to be the
outcome-set for some statistical measurement. Any test space A is associated in a natural
way with an ordered set called the logic of A, denoted by Π(A). Where A = FH, this logic
is isomorphic to the subspace lattice L(H). For another example, where A consists of all
partitions of a set S by sets belonging to an algebra B on S, Π(A) � B.

Considering the fundamental role symmetry plays throughout physics, and particularly
in quantum theory, it is remarkable how little it has been exploited in the quantum-logical
literature. In particular, the standard quantum logic, that is, the projection lattice L(H), and
its attendant frame manual F(H), are strikingly symmetrical objects. In several previous
papers [9–11], the second author has attempted to lay a foundation for a theory of symmetric
test spaces, that is, test spaces that are in some sense homogeneous under a group action. In
particular, Wilce [11] introduced the notion of a fully symmetric G-test space. This is a test
space in which any two tests have the same cardinality, and in which any bijection between
two tests is implemented by an element of G. The motivating example, of course, is the
frame manual F(H), with H’s unitary group playing the role of G: any bijection between
two frames extends (uniquely, at that) to a unitary operator.

The present paper continues the study of symmetric and fully symmetric test spaces.
After reviewing, in Sect. 2, some essential background information on test spaces and their
logics, in Sect. 3 we produce many examples of fully symmetric test spaces (some of them
fairly exotic), and present a general construction whereby two fully symmetric test spaces
can be combined to yield another. In Sect. 4, we note that every fully symmetric G-test
space arises in a natural way from a triple (G,K,σ) consisting of a group G, a subgroup
K ≤ G, and an element σ ∈ G \ K . We then show that A is connected (as a hypergraph) iff
it is fully symmetric under the subgroup generated by K and σ . Finally, in Sect. 5 we show
that any test space having a fairly weak homogeneity property relative to a compact group,
and having a finite-dimensional, separating set of states, can be represented covariantly as a
space of orthonormal subsets (not necessarily bases!) of a finite-dimensional Hilbert space.

2 Test Spaces and Orthoalgebras

In this section, we briefly review some basic lore concerning abstract quantum logics (or-
thomodular lattices and posets, and, more generally, orthoalgebras), and the Foulis-Randall
construction of such objects as invariants—“logics”—of test spaces. For details, see [1, 10].

2.1 Quantum Logics

An orthoalgebra is a structure (L,⊕,0,1) consisting of a set L, two distinguished elements
0 and 1, and a commutative, associative, cancellative partial operation ⊕ such that, for all
a ∈ L,

(1) a ⊕ 0 = a;
(2) ∃ a′ ∈ L with a ⊕ a′ = 1;
(3) a ⊕ a exists only if a = 0.
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An orthoalgebra L can be partially ordered by setting

a ≤ b ⇔ ∃c ∈ L with b = a ⊕ c.

The mapping a 	→ a′ is an orthocomplementation with respect to ≤, and a ⊕ b is defined iff
a ⊥ b, i.e., a ≤ b′. If a ⊥ b, then a ⊕ b is a minimal (but not necessarily least) upper bound
for a, b ∈ L.

Any orthomodular poset—hence, any orthomodular lattice, hence,any Boolean algebra—
can be regarded as an orthoalgebra with a ⊕b = a ∨b provided a ≤ b′. The given order then
coincides with the one defined above. Orthoalgebras arising in this way from OMPs have
a nice characterization, as follows: if (L,⊕,0,1) is an orthoalgebra, then the associated
orthoposet (L,≤,′ ) is an OMP iff, wherever defined, a ⊕ b is the least upper bound of
a, b ∈ L. This in turn is equivalent to the condition that if a, b, c are pairwise orthogonal in
L, then (a ⊕ b) ⊕ c exists. This last condition is called ortho-coherence. Hence, OMPs are
essentially the same things as orthocoherent OAs; accordingly, orthomodular lattices are the
same things as lattice-ordered orthoalgebras.

2.2 Test Spaces

Orthoalgebras arise from simpler combinatorial objects called algebraic test spaces, or—
to revive an older term—manuals. A test space is a pair (X,A) consisting of a set X and a
covering A of X by non-empty subsets, called tests. These nay be understood as the outcome
sets for various “experiments”; accordingly, subsets of tests are called events. A state on a
test space (X,A) is a mapping ω : X → [0,1] summing to one over each test.

Discrete classical probability theory concerns states on a classical test space, that is, a test
space (E, {E}) consisting of a single test. Elementary quantum probability theory concerns
states on a frame manual, i.e., a test space (XH,FH), where XH is the unit sphere, and FH,
the set of unordered orthonormal bases, of a Hilbert space H. Gleason’s theorem tells us that
so long as dim(H) > 2, every state on (X,F) arises from a density operator on H via the
“Born rule” ω(x) = Tr(ρPx). Note that both examples are uniform (the former, trivially).

More sophisticated models of both classical and quantum probability theory also fall
within the descriptive scope of the theory of test spaces. Indeed, if L is any orthoalgebra (in
particular: any boolean algebra, any projection lattice, any orthomodular lattice or poset . . .),
then we can consider the test space AL consisting of finite (or countable, or all) orthoparti-
tions of the unit; the states on this correspond in an obvious way to finitely-(or countably, or
totally) additive probability measures on L.

2.3 The Logic of a Test Space

An event of a test space (X,A) is a subset of a test. We write E = E(X,A) for the set of all
events. Events A,B ∈ E are complementary (written A coB) iff they partition a test, and per-
spective (written A ∼ B) iff they have a common complementary event. A test space (X,A)

is algebraic, or a manual, iff perspective events have the same complementary events—that
is, if

A ∼ B coC ⇒ A coC

for all events A,B,C ∈ E : If (X,A) is algebraic, then perspectivity is an equivalence relation
on E . Write [A] for the equivalence-class of A. The quotient set Π := E/ ∼ carries a well-
defined partial operation given by [A] ⊕ [B] := [A ∪ B] whenever A and B are disjoint
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events with A ∪ B ∈ E . Defining 0 := [∅] and 1 = [E], where E is any test, we obtain an
orthoalgebra (Π,⊕,0,1), called the logic of (X,A).

By way of illustration, if X = E and A = {E}, then Π � P(E); if (X,F) is the frame
manual of a Hilbert space H, then tests are orthonormal bases, events are orthonormal sets,
and two events are perspective iff they have the same closed span. It follows that Π � L(H).
In fact, any orthoalgebra L arises as the logic of a test space (for X, take the set of non-zero
elements of L, and for A, the set of all finite subsets of X orthosumable to 1).

2.4 Greechie Test Spaces

A test space (X,A) is Greechie iff (i) |E| ≥ 3 for all E ∈ A, and (ii) |E ∩ F | ≤ 1 for all
E,F ∈ A. Remarks: (i) The three-dimensional projective frame manual is Greechie. (ii) Any
Greechie test space is algebraic by default.

It is often useful to represent small Greechie test spaces by so-called Greechie diagrams,
in which each outcome is represented by a node, and in which the nodes belonging to a
test are joined by a line or some other smooth arc. For example, consider the Greechie test
space (X,A) where X = {a, b, c, x, y, z} and A = {{a, x, b}, {b, y, c}, {c, z, a}}: this has the
following Greechie diagram:

c

z y

a x b

Note that the events A = {a, z} and B = {b, y} are perspective; hence [A] = [B] =: p ∈
Π(X,A). The outcomes a and b are orthogonal, and [a], [b] ≤ p; however, [a] ⊕ [b] =
[{a, b}] �≤ p. Hence, the logic of (X,A) is an orthoalgebra that is not an OMP.

In fact, this example is prototypic of a test space with a non-orthocoherent logic. A k-
loop in a test space (X,A) is a finite sequence E1,E2, . . . ,Ek of tests with Ei ∩ Ei+1 �= ∅
for i = 1, . . . , k − 1 and with all other intersections empty, save that E1 ∩ Ek �= ∅. In this
language, the test space pictured above consists of a single 3-loop. In fact, the 3-loop is the
only obstruction to a Greechie test space’s having an orthocoherent logic, and a 4-loop is the
only further obstruction to that logic’s being a lattice (this is the celebrated Loop Lemma of
Greechie [4].)

3 Fully Symmetric Test Spaces

Let G be a group. A G-test space is a test space (X,A) equipped with an action of G on
X such that, for every test E ∈ A and every a ∈ G, a(E) ∈ A as well. We say that (X,A)

is G-symmetric [9, 10] iff G acts transitively on A, and the stabilizer of a test E ∈ A acts
transitively on E. Note that a G-symmetric test space is necessarily uniform, meaning that
all tests have the same cardinality, which we then call the rank of the test space.

Definition 3.1 A uniform G-test space (X,A) is fully symmetric iff, for any bijection f :
E → F between two tests E,F ∈ A, there exists some a ∈ G with f (x) = ax for all x ∈ E.
If this group element a is always unique, we say that (X,A) is strongly symmetric. By a fully
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symmetric (resp. strongly) symmetric test space, we mean one fully or strongly symmetric
under some group action, or, equivalently, under its automorphism group.

Remark Evidently, every fully symmetric test space is symmetric. Note, too, that for a
G-test space A to be fully symmetric, it suffices that (i) G act transitively on the tests of A,
and (ii) for some (hence, any) test E ∈ A, the stabilizer GE act on E as the full symmetric
group SE of all permutations of E. For later reference, we shall summarize this last situation
by saying that GE acts fully on E. More generally, we shall say that a subgroup J of G acts
fully on E iff every permutation of E can be implemented by an element of J (even if E

is not invariant under J ). Note that, to establish that this is the case, it suffices to show that
J contains an element σ that permutes the elements of E cyclically, and an element τ that
transposes two elements of E, leaving the others fixed.

Example 3.2 A classical test space {E} is fully (indeed, strongly) symmetric under the sym-
metric group SE .

Example 3.3 The frame manual of a Hilbert space is strongly symmetric with respect to
that space’s unitary group, since any bijection between two frames uniquely determines
a unitary operator on H. The projective frame manual, in which tests are represented by
maximal orthogonal sets of one-dimensional subspaces, is fully, but not strongly, symmetric
under H’s unitary group.

Example 3.4 (Uniform Partitions) Let S be a finite set of size |X| = nk; let X denote the set
of k-element subsets of S, and let A consist of all partitions of S into n blocks of k elements.
Then (X,A) is a fully symmetric algebraic test space of rank n. (Such a test space typically
has four-loops, so its logic isn’t an OML.)

Example 3.5 (Grids) An n-by-n grid can be regarded as the Greechie diagram of a test space
(with outcomes corresponding to the vertices, and tests, to the rows and columns). As this
test space has 4-loops but no 3-loops, it has an orthocoherent, but not lattice-ordered, logic.
(Note, too, that the state-space of this test space is essentially the set of doubly-stochastic
n-by-n matrices.) Such a test space is fully symmetric under the subgroup of S(n × n)

generated by Sn × Sn, together with the bijection (transposition) that exchanges the two
factors.

Note that an n×n grid arises as a sub-test space of a uniform test space of partitions (the
underlying set being essentially the set of n × n permutation matrices).

Example 3.6 (Projective Planes) The projective plane of order 2, the famous Fano plane, is
pictured below.
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Notice that this is a Greechie diagram! The corresponding test space is very odd: every
outcome is orthogonal to every other, yet the logic, far from being Boolean, is not even
orthocoherent. (Orthoalgebras of this sort, termed centeria, are discussed in [6].) Notwith-
standing these strange features, this test space is fully symmetric relative to its collineation
group. These remarks apply to any projective plane.

Example 3.7 (Platonic solids) Let X denote the set of edges of a regular polyhedron P ; let A

consist of sets of edges meeting at a vertex. Two sets in A meet in at most one edge, so (X,A)

is Greechie. If P is a platonic solid, (X,A) is fully symmetric relative to the group of rigid
motions of P . Note that each face of P yields a loop in A, and that these are the shortest
loops A. Thus, for instance, the logic of the tetrahedron, octohedron and icosohedron are
non-orthocoherent orthoalgebras, that of the cube is an OMP, but not a lattice, and the logic
of the dodecahedron is an OML.

Example 3.8 (Spaces of simplices) For another example, let A consist of the vertex sets of all
regular unit tetrahedra in R

3: since the set of symmetries of a simplex is the fully symmetry
group on the vertices, and since the rotation group plainly maps any regular tetrahedron
into any other, this is a fully—indeed, strongly—O(3)-symmetric test space. Since distinct
tetrahedra centered at the origin can share at most one vertex, this test space is Greechie,
hence, algebraic. Similar examples can be obtained using regular unit n+1-simplices in R

n.

3.1 Combinations of Fully G-Symmetric Test Spaces

Many more examples of fully-symmetric test spaces can be obtained by means of the fol-
lowing construction.

Definition 3.9 If (X,A) and (Y,B) are test spaces, let B(A,B) denote the set of all bi-
jections f : E → F where E ∈ A and F ∈ B. Identifying such a bijection with its graph
f ⊆ E×F , we regard (X×Y,B(A,B) as a test space. It can be shown that (X×Y,B(A,B)

is the direct product of X and Y in the category of uniform rank-n test spaces [9].

Suppose now that (X,A) and (Y,B) are respectively G- and G′-symmetric test spaces.
Let G × G′ act on X × X′ in the usual way. Then we have

Theorem 3.10 If (X,A) and (Y,B) are fully-symmetric G- and G′-test spaces, respectively,
of common rank n. Then (X × Y,B(A,B)) is fully G × G′-symmetric.

Proof Let f,g ∈ B(A,B), say with f : E → F and g : E′ → F ′. Let φ : f → g be a
bijection. We must produce elements a, b ∈ G such that φ(x,f (x)) = (ax, bf (x)) for every
x ∈ E. Now, if π1 : E′ × F ′ → E′ is the first coordinate projection, so that π1(x

′, y ′) = x ′

for all x ′, y ′ ∈ E × F , then (since f , φ and g are bijections), the mapping

x 	→ π1(φ(x,f (x)))

is a bijection from E to E′. Thus, there exists some a ∈ G with π1(φ(x,f (x))) = ax. Sim-
ilarly, y 	→ π2(φ(f −1(y), y)) is a bijection from F to F ′, hence, implemented by some
b ∈ G′. Thus, φ(x,f (x)) = (ax, bf (x)). �
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4 Constructing G-Test Spaces

As discussed in [11], the structure of a fully symmetric G-test space can be recovered from
purely group-theoretic data. Indeed, given a group G and a pair of subgroups H,K ≤ G,
let X = G/K , and let G(H,K) := {a{hK|h ∈ H }|a ∈ G}: this gives us a covering of X

by non-empty subsets, so we may regard (G/K,G(H,K)) as a test space, which is easily
seen to be symmetric under the natural action of G. Conversely, given a fully symmetric
test space (X,A), choose a test Eo ∈ A and an outcome xo ∈ Eo: taking K ≤ G to be the
stabilizer of xo and H ≤ G be any subgroup of the stabilizer of G that acts fully on Eo, one
finds that (X,A) is isomorphic to (G/K,G(H,K)).

In fact, one can reconstruct (X,A) using slightly less material. Choosing xo ∈ Eo ∈ A as
above, and again let K denote the stabilizer of xo. Now let σ be any element of G acting on
Eo as a cyclic permutation. (Such an element must exist, since (X,A) is fully symmetric.)
Since any transposition on E \ {xo} is represented by an element of K , the subgroup K and
the group element σ together generate a group 〈K,σ 〉 that acts fully on Eo. It follows that
the data (G,K,σ) entirely fix the structure of (X,A).

It may be helpful to bear in mind the example of the frame manual (X,F) associated with
H = R

3. This is fully symmetric under the orthogonal group O(3). If we let xo = (0,0,1)

be the “north pole” of the unit sphere, the stabilizer K can be identified with O(2). In the
preceding construction, the sphere is identified with O(3)/O(2); Eo = {xo, x1, x2} is a fixed
(but arbitrary) orthonormal basis extending xo, and σ is an orthogonal matrix permuting
these elements cyclically—that is, a 2π/3 rotation about xo + x1 + x2.

In what follows, we work with an arbitrary but fixed group G, and fully symmetric G-test
space (X,A), and we assume that xo ∈ Eo ∈ A, K ≤ G, and σ ∈ G \ K have been chosen as
above.

Lemma 4.1 For all x ∈ X, x ⊥ xo iff x = axo for some a ∈ KσK .

Proof If x ⊥ xo, then there exists a test E containing both x and xo. Let f : E → Eo be any
bijection with f (xo) = xo and f (x) = σxo, and let a ∈ G represent f , so that axo = xo and
ax = σxo ∈ Eo. Since axo = xo, we have a ∈ K , whence, a−1σ ∈ KσK . For the converse,
let a = kσk′ ∈ KσK . Then, since σxo ⊥ xo, we have kσk′xo = kσxo ⊥ kxo = xo. �

This tells us, in effect, that we can pivot any outcome x ∈ x⊥
o into a standard position—

namely, σxo—while holding xo fixed. Equivalently, every point orthogonal to xo has the
form kσxo where k ∈ K , as illustrated below.

σxo

◦ ◦ •

◦

◦kσxo

xo

Corollary 4.2 axo ⊥ bxo iff b−1a ∈ KσK iff σ ∈ Kb−1aK .

Corollary 4.3 KσK = Kσ−1K .

Proof As σ−1xo ⊥ xo, σ−1 ∈ KσK ; hence, Kσ−1K = KσK . �
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Remark

(1) The double cosets KaK partition G. Thinking of X as G/K , this is a coarsening of
the partition of X by left cosets. Indeed, KaK is just the union of the orbit of aK in
X under the action of K . In the example discussed above where X = O(3)/O(2) is the
unit sphere in R

3, with K representing the point xo (the north pole), the double coset
KaK would represent the line of latitude containing the point axo. Lemma 4.1 says, in
this instance, that axo ⊥ xo iff axo lies on the equator.

(2) With the preceding example in mind, we may wish to think of the set of double cosets
KgK as forming a kind of scale of “angles” between outcomes, with KeK = K cor-
responding to 1 and KσK corresponding to 0. We will not pursue this further, except
to note that the mapping aK,bK 	→ Kb−1aK is well-defined, and in some respects
formally resembles an inner product.

4.1 Orthoconnectedness

Call two outcomes x and y of (X,A) n-orthogonal iff there exists a sequence of outcomes
(xo, . . . , xn) in Xn with

xo = x ⊥ x1 ⊥ · · · ⊥ xn = y.

Note that we allow repetitions, so n-orthogonality implies n + k orthogonality for every k.
Every x ∈ X is 0-orthogonal to itself, and two elements of X are 1-orthogonal iff they are
orthogonal. Distinct non-orthogonal outcomes x and y are 2-orthogonal iff there exists a
third distinct element z with x ⊥ z ⊥ y.

By Lemma 4.1, y ⊥ xo iff y = axo where a ∈ KσK . If xo ⊥ z ⊥ y, then z = axo as above,
and y can be obtained from xo by a bijection fixing z, so, by a group element b ∈ Gz =
aKa−1. Thus, b ∈ (KσK)K(Kσ−1K) = KσKσ−1K . By Corollary 3.3, Kσ−1K = KσK ,
so

b ∈ KσKσK = (KσK)2.

More generally, we have the

Theorem 4.4 bxo is n-orthogonal to xo iff b ∈ (KσK)n.

Proof We proceed by induction on n. From the foregoing discussion, we already have the
base case (as well as the case n = 2). Suppose the statement of the theorem holds for n-
orthogonality, and let y = bxo be n + 1-orthogonal to xo. Then there exists some chain

xo ⊥ x1 ⊥ · · · ⊥ xn ⊥ y = bxo.

Let x1 = axo where a = kσ with k ∈ K . Then we have

xo = a−1x1 ⊥ a−1x2 ⊥ · · · ⊥ a−1y = a−1bxo.

Thus, a−1bxo is n-orthogonal to xo, whence, by hypothesis, a−1b ∈ (KσK)n. Thus, b ∈
a(Kσk)n ⊆ Kσ(KσK)n = (KσK)n+1. �

We say that (X,A) is orthoconnected iff, for every pair of outcomes x, y ∈ X is n-
orthogonal for some integer n. If every pair of outcomes is k-orthogonal for some k ≤ n,
we shall say that (X,A) is n-orthoconnected. (Thus, a 0-orthoconnected test space has just
a single outcome, and a 1-orthoconnected test space is classical.)
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Corollary 4.5 If (X,A) is n-orthoconnected, then G = (KσK)n. In particular, the latter is
a group.

By a chain in a test space (X,A), we mean a finite sequence (Eo,E1, . . . ,En) of tests
with Ei ∩ Ei+1 �= ∅. Evidently, distinct outcomes x and y are n-orthogonal iff there exists a
chain E1, . . . ,En with x ∈ E1 and y ∈ En. It follows that (X,A) is orthoconnected iff there
exists a chain between any two tests.

Proposition 4.6 Let (X,A) be a fully G-symmetric test space of rank ≥ 3. Let xo ∈ Eo ∈ A,
and let J be any subgroup of G containing K = Gxo and acting fully on E (so that J ≤ H ,
the stabilizer of Eo). Then (X,A) is orthoconnected iff it is fully J -symmetric.

Proof Let Ao denote the chain component of Eo, i.e., the set of tests reachable from Eo by
a chain. This is both K- and H -invariant, whence, J -invariant. Thus, if J acts transitively
(much less fully) on A, then Ao = A. For the converse, note that as J acts as the full permu-
tation group of Eo, we need only show that each E ∈ A has the form cEo for some c ∈ J .
Let n(E) denote the length of the shortest chain from Eo to E. If n(E) = 0, then E = Eo,
and there is nothing to show. Assume that every test E′ with n(E′) ≤ n is reachable from Eo

by some a ∈ J . Suppose that n(E) = n + 1. Then there exists a test E′ ∈ A with n(E′) = n,
such that E′ ∩ E �= ∅. Let x ′ ∈ E′ ∩ E. Let b ∈ G take E′ bijectively to E, with bx ′ = x ′,
and let a ∈ J with aEo = E′. Without loss of generality, we can assume that axo = x ′ (since
J acts fully on Eo). Then Gx′ = aKa−1 ⊆ J . Since b ∈ Gx′ , b ∈ J , and thus c := ba ∈ J

takes Eo to E. �

In Proposition 4.6 we can take J to be the entire subgroup generated by K and the
stabilizer H = GEo of Eo, or that generated by K and any group element σ acting as a
cyclic permutation of Eo.

Corollary 4.7 Let (X,A) be fully G-symmetric, of rank ≥ 3. Then (X,A) is orthoconnected
iff it is fully symmetric under 〈Gx,Gy〉 for any x ⊥ y in X.

Proof Suppose that x and y are orthogonal outcomes belonging to a test E ∈ A. By Propo-
sition 4.6, it suffices to show that 〈Gx,Gy〉 acts fully on E. For this, it is enough to note that
every transposition of elements of E belongs to 〈Gx,Gy〉. Every transposition on E fixes x

or y, save for the transposition (x, y) that interchanges x and y; but since |E| ≥ 3, this last
is a product of transpositions fixing x and y (specifically, (x, y) = (x, z)(y, z)(x, z), where
z ∈ E \ {x, y}). �

Remark It is geometrically evident that the frame manual F3 of a three-dimensional Real
Hilbert space is orthoconnected (indeed, 2-orthoconnected). As an illustration of Corol-
lary 4.7, note that the orthogonal group O(3) is generated by rotations about any two or-
thogonal axes.

5 A Linear Representation

As the examples adduced in Sect. 2 illustrate, fully symmetric test spaces can be very unlike
the frame and projection manuals arising in quantum mechanics. There is, however, a sense
in which any fully symmetric test space having a finite-dimensional, separating set of states



24 Int J Theor Phys (2008) 47: 15–25

supports a covariant Hilbert space interpretation. To put what follows into perspective, note
that it is always possible, given a test space (X,A), to construct a unitary representation
of G on Hilbert space H and a covariant mapping φ : X → H sending outcomes of X to
unit vectors, in such a way that x ⊥ y in X implies φ(x) ⊥ φ(y) in H. Indeed, one can
simply take H = 	2(X) under the regular representation of G, and identify X with the latter’s
standard basis. This embedding is of limited interest, of course: one wants to reduce the
dimension of H as much as possible. We shall show that, if (X,A) enjoys a fairly weak
homogeneity property relative to a compact group, and has an invariant finite-dimensional,
separating set Δ of states, then the dimension of H can be taken to be n + 1, where n is the
affine dimension of Δ.

Suppose (X,A) is a G-test space. Let Δ denote a convex set of states on (X,A). Denote
the linear span of Δ in R

X by V (Δ). This has dimension n + 1, n the affine dimension
of Δ. For every outcome x ∈ X, we have a functional fx ∈ V (Δ)∗ given by fx(ω) = ω(x)

for all ω ∈ Δ; we also have a unit functional 1 : V (Δ) → R given by 1(ω) = 1. Note that∑
x∈E fx = 1 (the sum converging in the weak-∗ topology). The action of G on X gives

rise to a linear action L of G on V (Δ), given by La(ω) = ω(a−1x) for all x ∈ X and all
ω ∈ V (Δ), along with the dual representation L∗ on V (Δ)∗ given by L∗

a(f ) = f ◦ La for
all a ∈ G,f ∈ V (Δ)∗. In the case of the frame manual (XH,FH) associated with a Hilbert
space H, if one takes for Δ the set of all states, then Gleason’s Theorem lets us identify
V (Δ) with the space of trace-class hermitian operators on H, and V ∗(Δ), with the space
of all hermitian operators on H. If H is finite dimensional, this last carries a natural inner
product given by 〈A,B〉 = Tr(AB∗), invariant under the natural action A 	→ U ∗AU of H’s
unitary group.

Definition 5.1 Call a G-test space (X,A) 2-transitive iff G acts transitively on the orthog-
onality relation ⊥⊆ X2—in other words, for any pairs of outcomes x ⊥ y and u ⊥ v, there
exists some α ∈ G with u = αx and v = αy.

Evidently, any fully-symmetric G-test space is 2-transitive.

Theorem 5.2 Let G be a compact group, let (X,A) be a 2-transitive uniform G-test space
of rank n < ∞, and let Δ be a G-invariant, finite-dimensional, separating set of states
on (X,A). Then there exists a G-invariant inner product on V ∗(Δ) and a G-equivariant
mapping X → V ∗(Δ) taking each x ∈ X to a unit vector px ∈ V ∗(Δ), such that x ⊥ y ⇒
〈px,py〉 = 0.

Proof Let G act on V ∗(Δ) as discussed above. Since G is compact, there exists a G-
invariant inner product 〈, 〉 on V ∗(Δ) (see, e.g., [8]), which we normalize so that ‖1‖ = 1.
With respect to this inner product, the representation a 	→ L∗

a of G on V ∗(Δ) is unitary. For
each x ∈ X, set qx = fx − 〈fx,1〉1, so that

〈qx,1〉 = 0. (1)

Notice that L∗
αqx = qαx for all α ∈ G and all x ∈ X. Since L is unitary and G acts transitively

on X, the vectors qx have a constant norm ‖qx‖ ≡ r . Moreover, since G takes any orthogonal
pair of outcomes to any other, θ := 〈qx, qy〉 is constant for any pair x ⊥ y in X. If θ = 0, we
are done: simply set px = qx/‖qx‖. If not, we have

0 = 〈qx,0〉 =
〈

qx,
∑

y∈E

qy

〉

= r2 + (n − 1)θ.
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In particular, θ = − r2

n−1 < 0. In this case, set px = qx + c1 where c = √−θ . Then the
mapping x 	→ px is a G-equivariant injection, and using (1), we have 〈px,py〉 = 0 whenever
x ⊥ y. Replacing px by px/‖px‖ if necessary finishes the proof. �

Note that the embedding of Theorem 5.2 will not, in general, preserve orthogonality in
both directions. That is, it may happen that px ⊥ py even though x �⊥ y in X. Indeed, any
fully symmetric test space having a 4-loop—e.g., any n-by-n grid—serves to illustrate this,
since F(H) itself has no 4-loops.
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